Model 2000 6½-Digit Multimeter Datasheet

KEITHLEY
A Tektronix Company

The Model 2000 6½-Digit Multimeter is part of Keithley's family of high performance DMMs. Based on the same high speed, low noise A/D converter technology as the Model 2001 and 2002, the 2000 is a fast, accurate, and highly stable instrument that's as easy to operate as it is to afford. It combines broad measurement ranges with superior accuracy specifications - DC voltage from 100nV to 1 kV (with 0.002\% 90-day basic accuracy) and DC resistance from $100 \mu \Omega$ to $100 \mathrm{M} \Omega$ (with 0.008% 90-day basic accuracy). Optional switch cards enable multiplexing up to 20 different input signals for multipoint measurement applications.

High Throughput

The 2000 offers exceptional measurement speed at any resolution. At $61 / 2$ digits, it delivers 50 triggered rdgs/s over the IEEE-488 bus. At $41 / 2$ digits, it can read up to 2000 rdgs/s into its internal 1024 reading buffer, making it an excellent choice for applications where throughput is critical.

For benchtop or stand-alone applications, the 2000 has a front panel design that's simple to understand and easy to use. The 2000 has 13 built-in measurement functions, including $\mathrm{DCV}, \mathrm{ACV}, \mathrm{DCl}, \mathrm{ACl}, 2 \mathrm{~W} \Omega, 4 \mathrm{~W} \Omega$, temperature, frequency, period, $\mathrm{dB}, \mathrm{dBm}$, continuity measurement, and diode testing. A built-in RS-232 interface connects to a notebook or full-sized PC's serial port to take, store, process, and display measurements automatically.

Key Features

- 13 built-in measurement functions
- 2000 readings/second at $41 / 2$ digits
- Optional scanner cards for multipoint measurements
- GPIB and RS-232 interfaces
- Fluke 8840/42 command set

Ordering Information
2000
6½-Digit DMM
2000/2000-SCAN
6½-Digit DMM/Scanner Combination
Accessories Supplied
Instruction Manual and Model
1751 Safety Test Leads
Accessories Available

2000-SCAN	10-channel, General-Purpose Scanner Card 2001-SCAN
10-channel Scanner Card with two high-speed channels	
2001-TCSCAN	9-channel, Thermocouple Scanner C ard with built-in cold junction

CABLES/ADAPTERS
7007-1 Shielded IEEE-488 Cable, 1 m (3.3 ft)
7007-2 Shielded IEEE-488 Cable, 2 m (6.6 ft)
7009-5 RS-232 Cable
RACK MOUNT KITS
4288-1 Single Fixed Rack Mount Kit
4288-2 Dual Fixed Rack Mount Kit
GPIB INTERFACES
KPCI-488LPA IEEE-488 Interface/Controller for the PCI Bus
KUSB-488B IEEE-488 USB-to-GPIB Interface Adapter

Services Available

2000-SCAN-3Y-EW
1-year factory warranty extended to 3 years from date of shipment
2000-3Y-EW
1-year factory warranty extended to 3 years from date of shipment
2001-TCSCAN-3Y-EW
1-year factory warranty extended to 3 years from date of shipment
C/2000-3Y-ISO
3 (ISO-17025 accredited) calibrations within 3 years of purchas for Models 2000, 2000-SCAN*

C/2001-3Y-ISO

3 (ISO-17025 accredited) calibrations within 3 years of purchase for Model 2001-TCSCAN*
*Not available in all countries

Optional Multiplexer Cards

Creating a self-contained multipoint measurement solution is as simple as plugging a scanner card into the option slot on the 2000's back panel. This approach eliminates the complexities of triggering, timing, and processing issues and helps reduce test time significantly. For applications involving more than 10 measurement points, the 2000 is compatible with Keithley's switch matrices and cards.

Model 2000-SCAN Scanner Card

- Ten analog input channels (2-pole)
- Configurable as 4 -pole, 5 -channel

Model 2001-SCAN Scanner Card

- Ten analog input channels
- Two channels of 2-pole, high-speed, solid-state switching

Model 2001-TCSCAN Thermocouple Scanner Card

- Nine analog input channels
- Built-in temperature reference for thermocouple cold-junction compensation

SCANNER OPTION 2000-SCAN

GENERAL: 10 channels of 2-pole relay input. All channels configurable to 4-pole. CAPABILITIES: Multiplex one of ten 2-pole or one of five 4-pole signals into DMM. INPUTS
Maximum Signal Level:
DC Signals: 110 V DC, 1 A switched, 30VA maximum (resistive load).
AC Signals: 125 V AC rms or 175 V AC peak, 100 kHz maximum, 1 A switched, 62.5 VA maximum (resistive load).
Contact Life: $>10^{5}$ operations at maximum signal level; $>10^{8}$ operations cold switching.
Contact Resistance: $<1 \Omega$ at end of contact life.
Actuation Time: 2.5 ms maximum on/off.
Contact Potential: $< \pm 500 \mathrm{nV}$ typical per contact, $1 \mu \mathrm{~V}$ max. $< \pm 500 \mathrm{nV}$ typical per contact pair, $1 \mu \mathrm{~V}$ max.

Connector Type: Screw terminal, \#22 AWG wire size.
Isolation Between Any Two Terminals: $>10^{9} \Omega,<75 \mathrm{pF}$.
Isolation Between Any Terminal and Earth: $>10^{9} \Omega,<150 \mathrm{pF}$.
Common Mode Voltage: 350V peak between any terminal and earth.
Maximum Voltage Between Any Two Terminals: 200V peak
Maximum Voltage Between Any Terminal and Model 2001 Input LO: 200V peak.
ENVIRONMENTAL: Meets all Model 2000 environmental specifications.
DIMENSIONS, WEIGHT: 21 mm high $\times 72 \mathrm{~mm}$ wide $\times 221 \mathrm{~mm}$ deep ($0.83 \mathrm{in} . \times 2.83 \mathrm{in} . \times 8.7$ in.). Adds 0.4 kg (10 oz.$)$.

* Solid-state relays in the 2001-SCAN only.

Scanner Configuration for Models 2000-SCAN and 2001-SCAN

DC Characteristics

Conditions: Function	MED (1 PLC) ${ }^{1}$ or SLOW (10 PLC) or MED (1 PLC) with filter of 10			$\begin{gathered} \text { Accuracy: } \pm(\text { ppm of reading }+ \text { ppm of range }) \\ \text { (ppm }=\text { parts per million) } \\ \text { (e.g., } 10 \mathrm{ppm}=0.001 \%) \end{gathered}$					
				or Burden Voltage ($\pm 5 \%$)	Input Resistance	$\begin{aligned} & 24 \text { Hour }{ }^{14} \\ & 23^{\circ} \mathrm{C} \pm 1^{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} 90 \text { Day } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	$\begin{gathered} 1 \mathrm{Year} \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	Coefficient $0^{\circ}-18^{\circ} \mathrm{C} \text { and } 28^{\circ}-50^{\circ} \mathrm{C}$
Voltage	100.0000		$0.1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$30+30$	$40+35$	$50+35$	$2+6$
	1.000000	V	1.0 $\mu \mathrm{V}$		$>10 \mathrm{G} \Omega$	$15+6$	$25+7$	$30+7$	$2+1$
	10.00000	V	$10 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$15+4$	$20+5$	$30+5$	$2+1$
	100.0000	V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$30+6$	$45+6$	$5+1$
	1000.000	V ${ }^{\text {a }}$	1 mV		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+6$	$45+6$	$5+1$
Resistance ${ }^{15}$	100.0000	Ω	$100 \mu \Omega$	1 mA		$30+30$	$80+40$	$100+40$	$8+6$
	1.000000	$\mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	1 mA		$20+6$	$80+10$	$100+10$	$8+1$
	10.00000	k Ω	$10 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$		$20+6$	$80+10$	$100+10$	$8+1$
	100.0000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	$7 \mu \mathrm{~A}$		$20+6$	$80+10$	$100+10$	$8+1$
	1.000000	M Ω^{16}	1Ω	$7 \mu \mathrm{~A}$		$20+6$	$80+10$	$100+10$	$8+1$
	10.00000	$M \Omega^{11,16}$	10Ω	$700 \mathrm{nA} / / 10 \mathrm{M} \Omega$		$150+6$	$200+10$	$400+10$	$95+1$
	100.0000	$M \Omega^{11,16}$	100Ω	$700 \mathrm{nA} / / 10 \mathrm{M} \Omega$		$800+30$	$1500+30$	$1500+30$	$900+1$
Current	10.00000	mA	10 nA	$<0.15 \mathrm{~V}$		$60+30$	$300+80$	$500+80$	$50+5$
	100.0000	mA	100 nA	$<0.03 \mathrm{~V}$		$100+300$	$300+800$	$500+800$	$50+50$
	1.000000	A	$1 \mu \mathrm{~A}$	$<0.3 \mathrm{~V}$		$200+30$	$500+80$	$800+80$	$50+5$
	3.00000	A	$10 \mu \mathrm{~A}$	$<1 \mathrm{~V}$		$1000+15$	$1200+40$	$1200+40$	$50+5$
Continuity 2W	1	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA		$40+100$	$100+100$	$120+100$	$8+1$
Diode Test	3.00000	V	$10 \mu \mathrm{~V}$	1 mA		$20+6$	$30+7$	$40+7$	$8+1$
	10.00000	V	$10 \mu \mathrm{~V}$	$70 \mu \mathrm{~A}$		$20+6$	$30+7$	$40+7$	$8+1$
	10.00000	V	$10 \mu \mathrm{~V}$	$7 \mu \mathrm{~A}$		$20+6$	$30+7$	$40+7$	$8+1$

DC OPERATING CHARACTERISTICS ${ }^{2}$

Function	Digits	Readings/s	PLCs 8
DCV (all ranges),	$61 / 2^{3,4}$	5	10
DCl (all ranges), and	$6^{1 / 2^{3,7}}$	30	1
Ohms (<10M range)	$6^{1 / 2^{3,5}}$	50	1
	$5^{1 / 2^{3,5}}$	270	0.1
	$5^{1 ⁄ 2^{5}}$	500	0.1
	$5^{1 ⁄ 2^{5}}$	1000	0.04
	412^{5}	2000	0.01

DC SYSTEM SPEEDS ${ }^{2,6}$
range change ${ }^{\text {: } 50 / \text { s. }}$
FUNCTION CHANGE ${ }^{3}$: 45/s.
AUTORANGE TIME ${ }^{3,10}$: $<30 \mathrm{~ms}$.
ASCII READINGS TO RS-232 (19.2K BAUD): 55/s.
MAX. INTERNAL TRIGGER RATE: 2000/s.
MAX. EXTERNAL TRIGGER RATE: 400/s.

DC GENERAL

LINEARITY OF 10VDC RANGE: \pm (1ppm of reading +2 ppm of range).
DCV, Ω, TEMPERATURE, CONTINUITY, DIODE TEST INPUT PROTECTION: 1000V, all ranges.
MAXIMUM 4 W Ω LEAD RESISTANCE: 10% of range per lead for 100Ω and $1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
DC CURRENT INPUT PROTECTION: 3A, 250 V fuse.
SHUNT RESISTOR: 0.1Ω for $3 \mathrm{~A}, 1 \mathrm{~A}$, and 100 mA ranges. 10Ω for 10 mA range.
CONTINUITY THRESHOLD: Adjustable 1Ω to 1000Ω.
AUTOZERO OFF ERROR: Add $\pm(2 \mathrm{ppm}$ of range error $+5 \mu \mathrm{~V})$ for <10 minutes and $\pm 1^{\circ} \mathrm{C}$ change.
OVERRANGE: 120% of range except on $1000 \mathrm{~V}, 3 \mathrm{~A}$, and diode.

SPEED AND NOISE REJECTION

Rate	Readings/s	Digits	RMS Noise 10V		
Range	NMRR 12	CMRR 13			
10 PLC	5	$61 / 2$	$<1.5 \mu \mathrm{~V}$	60 dB	140 dB
1 PLC	50	$61 / 2$	$<4 \mu \mathrm{~V}$	60 dB	140 dB
0.1 PLC	500	$51 / 2$	$<22 \mu \mathrm{~V}$	-	80 dB
0.01 PLC	2000	$41 / 2$	$<150 \mu \mathrm{~V}$	-	80 dB

DC NOTES

1. Add the following to "ppm of range" uncertainty: 1 V and $100 \mathrm{~V}, 2 \mathrm{ppm} ; 100 \mathrm{mV}, 15 \mathrm{ppm} ; 100 \Omega, 15 \mathrm{ppm}$; $1 \mathrm{k} \Omega-<1 \mathrm{M} \Omega, 2 \mathrm{ppm} ; 10 \mathrm{~mA}$ and $1 \mathrm{~A}, 10 \mathrm{ppm} ; 100 \mathrm{~mA}, 40 \mathrm{ppm}$
2. Speeds are for 60 Hz operation using factory default operating conditions (*RST). Autorange off, Display off, Trigger delay $=0$.
3. Speeds include measurement and binary data transfer out the GPIB
4. Auto zero off.
5. Sample count $=1024$, auto zero off.
6. Auto zero off, NPLC $=0.01$.

Ohms $=24$ readings/second.
8. 1 PLC $=16.67 \mathrm{~ms} @ 60 \mathrm{~Hz}, 20 \mathrm{~ms} @ 50 \mathrm{~Hz} / 400 \mathrm{~Hz}$. The frequency is automatically determined at power up
9. For signal levels $>500 \mathrm{~V}$, add $0.02 \mathrm{ppm} / \mathrm{V}$ uncertainty for the portion exceeding 500 V .
10. Add 120 ms for ohms.
11. Must have 10% matching of lead resistance in Input HI and LO
12. For line frequency $\pm 0.1 \%$.
13. For $1 \mathrm{k} \Omega$ unbalance in $L 0$ lead.
14. Relative to calibration accuracy.
15. Specifications are for 4 -wire ohms. For 2 -wire ohms, add 1Ω additional uncertainty
16. For rear inputs, add the following to temperature coefficient "ppm of reading" uncertainty $10 \mathrm{M} \Omega 95 \mathrm{ppm}$, $100 \mathrm{M} \Omega 900 \mathrm{ppm}$. Operating environment specified for 0° to $50^{\circ} \mathrm{C}$ and $50 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.

True RMS AC Voltage and Current Characteristics

Voltage Range	Resolution	Calibration Cycle	Accuracy ${ }^{1}: \pm\left(\%\right.$ of reading $+\%$ of range), $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$				
			$3 \mathrm{~Hz}-10 \mathrm{~Hz}{ }^{10}$	$10 \mathrm{~Hz}-20 \mathrm{kHz}$	$20 \mathrm{kHz}-50 \mathrm{kHz}$	$50 \mathrm{kHz-100} \mathrm{kHz}$	$100 \mathrm{kHz}-300 \mathrm{kHz}$
100.0000 mV	$0.1 \mu \mathrm{~V}$						
1.000000 V	$1.0 \mu \mathrm{~V}$	90 Days	$0.35+0.03$	$0.05+0.03$	$0.11+0.05$	$0.60+0.08$	$4+0.5$
10.00000 V	$10 \mu \mathrm{~V}$						
100.0000 V	$100 \mu \mathrm{~V}$	1 Year	$0.35+0.03$	$0.06+0.03$	$0.12+0.05$	$0.60+0.08$	$4+0.5$
750.000 V	1 mV						
		Temperature Coefficient/ ${ }^{\circ} \mathrm{C}^{8}$	$0.035+0.003$	$0.005+0.003$	$0.006+0.005$	$0.01+0.006$	$0.03+0.01$
Current Range	Resolution	Calibration Cycle	$3 \mathrm{Hz-10} \mathrm{~Hz}$	$10 \mathrm{~Hz}-3 \mathrm{kHz}$	$3 \mathrm{kHz-5} \mathrm{kHz}$		
1.000000 A	$1 \mu \mathrm{~A}$	90 Day/1 Year	$0.30+0.04$	$0.10+0.04$	$0.14+0.04$		
$3.00000 \mathrm{~A}^{9}$	$10 \mu \mathrm{~A}$	90 Day/1 Year	$0.35+0.06$	$0.15+0.06$	$0.18+0.06$		
		Temperature Coefficient/ ${ }^{\circ} \mathrm{C}^{8}$	$0.035+0.006$	$0.015+0.006$	$0.015+0.006$		

HIGH CREST FACTOR ADDITIONAL ERROR $\pm\left(\%\right.$ of reading) ${ }^{7}$					
CREST FACTOR:	1-2	2-3	3-4 4-5		
ADDITIONAL ERROR:	0.05	0.15	$0.30 \quad 0.40$		
AC OPERATING CHARACTERISTICS ${ }^{2}$					
Function ACV (all ranges), and ACI (all ranges)	Digits		Readings/s	Rate	Bandwidth
		$61 / 2^{3}$	2s/reading	SLOW	$3 \mathrm{Hz-300} \mathrm{kHz}$
		$61 / 2^{3}$	1.4	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
		$61 / 2^{4}$	4.8	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
		$61 / 2^{3}$	2.2	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
		$61 / 2^{4}$	35	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$

ADDITIONAL LOW FREQUENCY ERRORS \pm (\% of reading)

| | Slow | Med | Fast |
| :---: | :---: | :---: | :---: | :---: |
| $20 \mathrm{~Hz}-\quad 30 \mathrm{~Hz}$ | 0 | 0.3 | - |
| $30 \mathrm{~Hz}-\quad 50 \mathrm{~Hz}$ | 0 | 0 | - |
| $50 \mathrm{~Hz}-100 \mathrm{~Hz}$ | 0 | 0 | 1.0 |
| $100 \mathrm{~Hz}-200 \mathrm{~Hz}$ | 0 | 0 | 0.18 |
| $200 \mathrm{~Hz}-300 \mathrm{~Hz}$ | 0 | 0 | 0.10 |
| $>300 \mathrm{~Hz}$ | 0 | 0 | 0 |

AC SYSTEM SPEEDS ${ }^{2,5}$
FUNCTION/RANGE CHANGE ${ }^{6}$: 4/s.
AUTORANGE TIME: <3s.
ASCII READINGS TO RS-232 (19.2K BAUD) ${ }^{4}$: 50/s.
MAX. INTERNAL TRIGGER RATE $4: 300 / \mathrm{s}$.
MAX. EXTERNAL TRIGGER RATE ${ }^{4}$: $300 / \mathrm{s}$.

AC GENERAL
INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \%$ paralleled by $<100 \mathrm{pF}$.
ACV INPUT PROTECTION: 1000 V p.
MAXIMUM DCV: 400 V on any ACV range.
ACI INPUT PROTECTION: 3A, 250V fuse.
BURDEN VOLTAGE: 1A Range: <0.3V rms. 3A Range: <1V rms.
SHUNT RESISTOR: 0.1Ω on all ACI ranges.
AC CMRR: $>70 \mathrm{~dB}$ with $1 \mathrm{k} \Omega$ in LO lead.
MAXIMUM CREST FACTOR: 5 at full scale.
VOLT HERTZ PRODUCT: $\leq 8 \times 10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$.
OVERRANGE: 120% of range except on 750 V and 3 A ranges.

AC NOTES

1. Specifications are for SLOW rate and sinewave inputs $>5 \%$ of range
2. Speeds are for 60 Hz operation using factory default operating conditions (*RST). Auto zero off, Auto range off, Display off, includes measurement and binary data transfer out the GPIB.
3. 0.01% of step settling error. Trigger delay $=400 \mathrm{~ms}$.
4. Trigger delay $=0$.
5. DETector:BANDwidth 300, NPLC $=0.01$.
6. Maximum useful limit with trigger delay $=175 \mathrm{~ms}$.
7. Applies to non-sinewaves $>5 \mathrm{~Hz}$ and $<500 \mathrm{~Hz}$ (guaranteed by design for crest factors >4.3).
8. Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$.
9. For signal levels $>2,2 \mathrm{~A}$, add additional 0.4% to "of reading" uncertainty.
10. Typical uncertainties. Typical represents two sigma or 95% of manufactured units measure $<0.35 \%$ of reading and three sigma or 99.7% measure $<1.06 \%$ of reading.

Triggering and Memory

READING HOLD SENSITIVITY: $0.01 \%, 0.1 \%, 1 \%$, or 10% of reading.
TRIGGER DELAY: 0 to 99 hrs (1 ms step size).
EXTERNAL TRIGGER LATENCY: $200 \mu \mathrm{~s}+<300 \mu \mathrm{~s}$ jitter with autozero off, trigger delay $=0$.
MEMORY: 1024 readings.

Math Functions

Rel, Min/Max/Average/StdDev (of stored reading), dB, dBm, Limit Test, \%, and mX+b with user defined units displayed.
DBM REFERENCE RESISTANCES: 1 to 9999Ω in 1Ω increments.

Standard Programming Languages

SCPI (Standard Commands for Programmable Instruments)
Keithley 196/199
Fluke 8840A, Fluke 8842A

Remote Interface

GPIB (IEEE-488.1, IEEE-488.2) and RS-232C.
Frequency and Period Characteristics ${ }^{1,2}$

ACV Range	Frequency Range	Period Range	Gate Time	Resolution $\pm($ ppm of reading $)$	Accuracy 90 Day/1 Year $\pm(\%$ of reading $)$
100 mV	3 Hz to to 750 V	500 kHz	33 ms to $2 \mu \mathrm{~s}$	$1 \mathrm{~s}($ SLOW $)$	0.3

FREQUENCY NOTES

1. Specifications are for square wave inputs only. Input signal must be $>10 \%$ of ACV range. If input is $<20 \mathrm{mV}$ on the 100 mV range, then frequency must be $>10 \mathrm{~Hz}$.
2. 20% overrange on all ranges except 750 V range.

Temperature Characteristics

Thermocouple ${ }^{2,3,4}$				Accuracy ${ }^{1}$ 90 Day/1 Year $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	
Type	Range		Resolution	Relative to Reference Junction	Using 2001-TCSCAN ${ }^{5}$
J	-200 to +	$760^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}$	$\pm 0.65{ }^{\circ} \mathrm{C}$
K	-200 to +	$1372^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}$	$\pm 0.70^{\circ} \mathrm{C}$
T	-200 to +	$400^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}$	$\pm 0.68^{\circ} \mathrm{C}$

TEMPERATURE NOTES

1. For temperatures $<-100^{\circ} \mathrm{C}$, add $\pm 0.1^{\circ} \mathrm{C}$ and $>900^{\circ} \mathrm{C}$ add $\pm 0.3^{\circ} \mathrm{C}$.
2. Temperature can be displayed in ${ }^{\circ} \mathrm{C}, \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$.
3. Accuracy based on ITS-90
4. Exclusive of thermocouple error.
5. Specifications apply to channels $2-6$. Add $0.06^{\circ} \mathrm{C} /$ channel from channel 6 .

General Information

POWER SUPPLY: 100V / 120V / 220V / 240V.
LINE FREQUENCY: 50 Hz to 60 Hz and 400 Hz , automatically sensed at power-up.
POWER CONSUMPTION: 22VA.
VOLT HERTZ PRODUCT: $\leq 8 \times 10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$.
OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to 80% R.H. at $35^{\circ} \mathrm{C}$ and at an altitude of up to 2000 m .
STORAGE ENVIRONMENT: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
SAFETY: Conforms to European Union Low Voltage Directive.
EMC: Conforms to European Union EMC Directive.
WARMUP: 1 hour to rated accuracy.
VIBRATION: MIL-PRF-2800F Class 3 Random.
DIMENSIONS:
Rack Mounting: 89 mm high $\times 213 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep ($3.5 \mathrm{in} \times 8.38 \mathrm{in} \times 14.56 \mathrm{in}$).
Bench Configuration (with handle and feet): 104 mm high $\times 238 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep ($4.13 \mathrm{in} \times 9.38 \mathrm{in} \times 14.56 \mathrm{in}$).
NET WEIGHT: 2.9 kg (6.3 lbs).
SHIPPING WEIGHT: $5 \mathrm{~kg}(11 \mathrm{lbs})$.

